Bauphysikalisches Berechnungsblatt Musterbeispiel C

BAUPHYSIKALISCHES BERECHNUNGSBLATT

Projekt: Musterbeispiel C Berechnungsblatt-Nr.: 1
Datum: 23.12.2014

Auftraggeber: Musterbeispiel C Bearbeitungsnr.:

Bauteilbezeichnung:

FD03 Duodach, Wärmestrom nach oben

Bauteiltyp:

Außendecke, Wärmestrom nach oben

Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946

U - Wert 0,12 [W/m²K]

ı

A

M 1:20

ь								101 1 . 20
Ko	nstruktionsaufbau und Berechnung							
	Baustoffschichten		d	μ	λ	R=d/λ	ρ	ρ *d
	von außen nach innen		Dicke	WD-Diff.	Leitfähig.	Widerst.	Dichte	Flächgew.
Nr	Bezeichnung		[m]	[-]	[W/mK]	[m²K/W]	[kg/m³]	[kg/m²]
1	Kies	*	0,060	1	0,700	0,086	1.800	108,0
2	Roofmate MK	*	0,0001	1	0,500		980	0,1
3	Roofmate SL-A (80mm)		0,080	80	0,033	2,424	33	2,6
4	Dörrkuplast E-KV-5K		0,005	80.000	0,170	0,029	1.000	5,0
5	Dörrkuplast E-4sk/V		0,004	80.000	0,170	0,024	1.000	4,0
6	Vacupor BIT (40 mm)		0,040	1000000	0,007	5,714	185	7,4
7	Dörr-Tiralbit E-ALGV-4K		0,004	1000000	0,170	0,022	1.000	3,8
8	Stahlbetondecke im Gefälle		0,200	50	2,300	0,087	2.400	480,0
Ва	uteildicke (wärmetechnisch relevant) [m]		0,333					
Ва	uteildicke gesamt [m]		0,393					
Flá	Flächenbezogene Masse des Bauteils [kg/m²]							610,9
Sι	mme der Wärmeübergangswiderstände	R _{si} + R _{se}				0,140	[m²K/W]	
W	ärmedurchgangswiderstand	$R_T = R_{si} +$	$\Sigma R_t +$	· R se		8,440	[m²K/W]	
W	ärmedurchgangskoeffizient	U = 1 / R _T				0,12	[W/m ² K]	

^{*...} diese Schicht zählt nicht zur Berechnung (wärmetechnisch irrelevant)

Wasserdampfdiffusion nach ÖNORM B 8110-2: 2003-07-01

Randbedingungen: Innentemp.: gemäß ÖNORM

Luftfeuchtigkeit: Außen: gemäß ÖNORM

Innen: gemäß ÖNORM

Innen: gemäß ÖNORM

Seehöhe: 505 m Region : NF - Nord - Föhngebiet

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Taupunkttemperatur: 14,79°C

Es wird in keinem Monat Oberflächenkondensat erwartet

Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Temperatur (80%): 17,96°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Temperatur- und Dampfdiffusionsberechnung

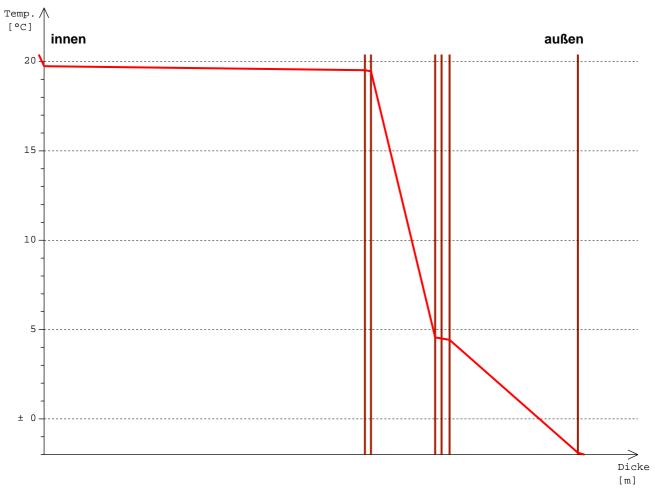
Musterbeispiel C

Bauteil: FD03 Duodach, Wärmestrom nach oben					Seehöhe 505 m Norm-Außentemperatur: -2,39315 °C							
Bereich Temperatur t Wärmeüb. α					Rel. L	uftfeuch	ite	W.Sättigu	W.Sättigungsdr.		W.Teildruck P	
Jänner		in °C		in m²*K/W		φ (in %)			Ps (in %)		n Pa	
Innen	ti = 20		Rsi =	i = 0,25		n,e)=	62,6	Ps,i = 2	336,95	Pi=φ i * Ps,i = 1463,		
Außen	te = -2,393		Rse = 0,04		φe = 80,0		Ps,e = 500,35		Pe=φ i* Ps,e = 400,3			
Summe Δ t=ti-te= 2		= 22,3							Δ P= Pi - Pe = 1062			
Schichte	dj	λ n,j	Rt,j	$(\Delta t)j$	tj,j+1	Ps,j,j+1	μј	sdj	(∆P)j	Pj,j+1	Kondensat	
	m	W/(mK)	m²K/W	K	°C	Pa	-	μ j*dj	Pa	Pa	ja/nein	
Innenluft	-	_	-	-	20,0	2337	-	-	-	_	nein	
Wärmeübergangswid. innen	-	-	0,250	0,65	19,3	2244	_	-	_	1463	nein	
Stahlbetondecke im Gefälle	0,2000	2,300	0,087	0,23	19,1	2213	50	10,00	0,24	1463	nein	
Dörr-Tiralbit E-ALGV-4K	0,0038	0,170	0,022	0,06	19,1	2205	1000000	3800,	90,68	1372	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	18,4	2117	1000000	1739,	41,50	1331	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	17,8	2033	1000000	1739,	41,50	1289	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	17,1	1951	1000000	1739,	41,50	1248	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	16,5	1873	1000000	1739,	41,50	1206	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	15,8	1797	1000000	1739,	41,50	1165	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	15,2	1724	1000000	1739,	41,50	1123	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	14,5	1654	1000000	1739,	41,50	1082	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	13,9	1586	1000000	1739,	41,50	1040	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	13,2	1520	1000000	1739,	41,50	999	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	12,6	1457	1000000	1739,	41,50	957	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	11,9	1396	1000000	1739,	41,50	916	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	11,3	1338	1000000	1739,	41,50	874	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	10,6	1281	1000000	1739,	41,50	833	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	10,0	1227	1000000	1739,	41,50	791	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	9,3	1175	1000000	1739,	41,50	750	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	8,7	1125	1000000	1739,	41,50	708	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	8,1	1076	1000000	1739,	41,50	667	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	7,4	1030	1000000	1739,	41,50	625	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	6,8	984,9	1000000	1739,	41,50	584	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	6,1	941,8	1000000	1739,	41,50	542	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	5,5	900,5	1000000	1739,	41,50	501	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	4,8	860,7	1000000	1739,	41,50	459	nein	
Vacupor BIT (40 mm)	0,0017	0,007	0,248	0,65	4,2	822,5	1000000	1739,	41,50	418	nein	

Temperatur- und Dampfdiffusionsberechnung

Musterbeispiel C

Bauteil: FD03 Duodach, Wärmestrom nach oben						Seehöhe 505 m Norm-Außentemperatur: -2,39315 °C							
Bereich Jänner		eratur t °C	Wärmeüb. α in m²*K/W		Rel. Luftfeuchte φ (in %)			W.Sättigungsdr. Ps (in %)		W.Teildruck P in Pa			
Innen ti = 20		Rsi =	0,25	6 φ i (tn,e)= 62,6			Ps,i = 2336,95		Pi=φ i * Ps,i = 1463,				
Außen te = -2,393		Rse =	0,04	φe = 80,0		Ps,e =	500,35 $Pe=\phi i*Ps,e=40$		Ps,e = 400,3				
Summe	Δ t=ti-te= 22,3									Δ P= Pi - Pe = 1062			
Schichte	dj	λ n,j	Rt,j	(\Delta t)j	tj,j+1	Ps,j,j+1	μј	sdj	(∆P)j	Pj,j+1	Kondensat		
	m	W/(mK)	m²K/W	К	°C	Pa	-	μ j*dj	Pa	Pa	ja/nein		
Dörrkuplast E-4sk/V	0,0040	0,170	0,024	0,06	4 1	819,0	80000	320,0	7,64	410	nein		
Dörrkuplast E-KV-5K	0,0050	0,170	0,029	0,08		814,6	80000	400,0	9,55	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		779,1	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		744,9	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		712,1	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		680,6	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		650,3	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		621,2	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		591,0	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63	-1,0		80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		532,1	80	0,640	0,02	400	nein		
Roofmate SL-A (80mm)	0,0080	0,033	0,242	0,63		504,7	80	0,640	0,02	400	nein		
Wärmeübergangswid. außen	-	_	0,040	0,10		500,4	_	_	_	400	nein		
Außenluft	-	_	_	_		500,4	_	_	_		nein		
	0,332		8,590			300,1		44536			110111		


... Dicke ... Wasserdampfsättigungsdruck dj Ps,j,j+1 λ n,j ... Wärmeleitfähigkeit μj ... Wasserdampf-Diffusionswiderstandszahl ... Wärmedurchlaßwiderstand $(1/\Delta)j$... Wasserdampf-Diffusionsdurchlaßwiderstand Rt,j ... relativer Wasserdampf - Teildruck ... relative Temperaturänderung zw. 2 Schichten (∆ P)j ... absolute Temperaturänderung zw. 2 Schichten ... absoluter Wasserdampf - Teildruck Pj,j+1 Berechnung It. ÖNORM B 8110-2: 2003-07-01

Temperaturverlauf gemäß ÖNORM B 8110-2:

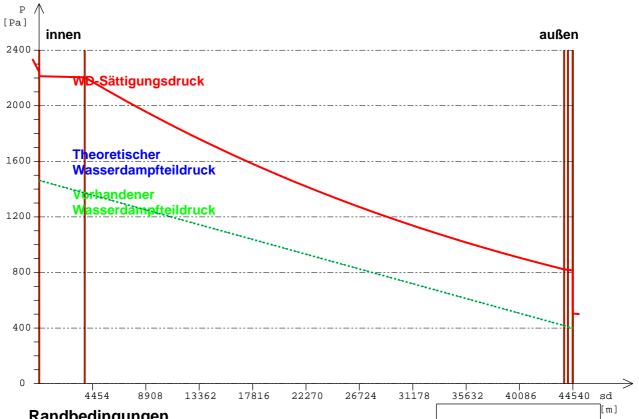
Musterbeispiel C

Jänner

Temperaturverlauf in FD03 Duodach, Wärmestrom nach oben

Temperaturverlauf

Schichtbezeichnung	Dicke [m]	Lambda [W/mK]	Widerst. [m2K/W]	Temp.	∆Temp [°C]
				20,0	
Wärmeübergangswid. innen		0,000	0,250	19,3	0,7
Stahlbetondecke im Gefälle	0,200	2,300	0,087	19,1	0,2
Dörr-Tiralbit E-ALGV-4K	0,0038	0,170	0,022	19,1	0,0
Vacupor BIT (40 mm)	0,040	0,007	5,714	4,2	14,9
Dörrkuplast E-4sk/V	0,004	0,170	0,024	4,1	0,1
Dörrkuplast E-KV-5K	0,005	0,170	0,029	4,0	0,1
Roofmate SL-A (80mm)	0,080	0,033	2,424	-2,3	6,3
Wärmeübergangswid. außen		0,000	0,040	-2,4	0,1
	1		1		I


Berechnung It. ÖNORM B 8110-2: 2003-07-01

Dampfdiffusion gemäß ÖNORM B 8110-2

Musterbeispiel C

Jänner

Dampfdiffusion im Bauteil: FD03 Duodach, Wärmestrom nach oben

Randbedingungen Außen Innen Lufttemperatur [°C] 20 -2,39 Relative Luftfeuchtigkeit [%] 62,61 80,00 Wasserdampfsättigungsdruck [Pa] 2.337,0 500,4 Wasserdampfteildruck [Pa] 1.463,1 400,3

Diffusionsverhalten

Schichtbezeichnung	Dicke [m]	Diff. Zahl μ	Wid. [m²K/W	Sätt. Druck	Vorh. Druck
				2337,0	1463,1
Wärmeübergangswid. innen			0,250	2244,3	1463.1
Stahlbetondecke im Gefälle	0,200	50	0,087	2212,9	
Dörr-Tiralbit E-ALGV-4K	0,0038	1000000	0,022		
Vacupor BIT (40 mm)	0,040	1000000	5,714	•	
Dörrkuplast E-4sk/V	0,004	80.000	0,024	•	410,0
Dörrkuplast E-KV-5K	0,005	80.000	0,029		400,4
Roofmate SL-A (80mm)	0,080	80	2,424		400,3
Wärmeübergangswid. außen			0,040	500,4	400,3

Dampfdiffusion gemäß ÖNORM B 8110-2

Musterbeispiel C

Jänner

Dampfdiffusion im Bauteil: FD03 Duodach, Wärmestrom nach oben

Oberflächentemperatur innen: 19,35°C Taupunkttemperatur: 12,65°C

Es fällt kein Oberflächenkondensat an!

Im Jänner gibt es kein Kondensat.

Es gibt keine Kondensation im Inneren des Bauteils.

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C Taupunktten

Es wird in keinem Monat Oberflächenkondensat erwartet

Kritischster Monat Juli Oberflächentemperatur innen: 19,91°C

Es wird in keinem Monat Schimmel an der Oberfläche erwartet

Berechnung It. ÖNORM B 8110-2: 2003-07-01

Taupunkttemperatur: 14,79°C

Temperatur(80%): 17,96°C